

DISCONTOOLS: research gaps for improving infectious disease control in animals

J. Charlier DISCONTOOLS Project Manager

21 March 2023

What is DISCONTOOLS?

- 1) Disease database 56 diseases
- 2) Gap analysis diagnostics, pharmaceuticals, vaccines
- 3) Prioritisation model

Stakeholder driven – Open-access - Flexible

Background

ETPGAH - 2007

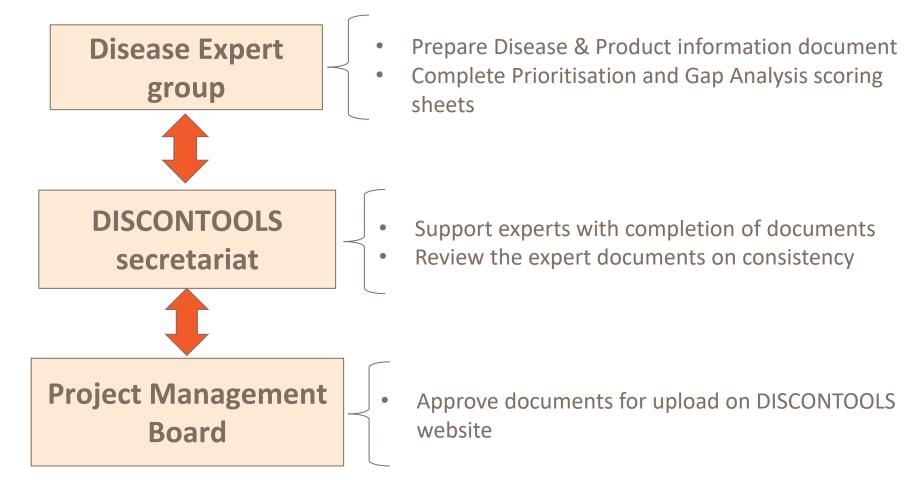
Action Plan

2008 - 2013

2014 -

Support from European countries with AnimalhealthEurope providing secretariat support

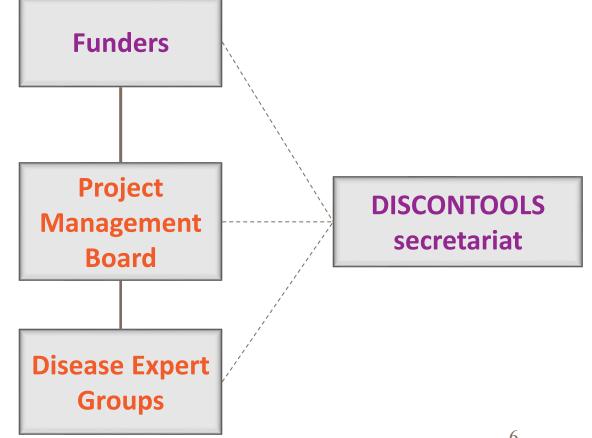
For whom?

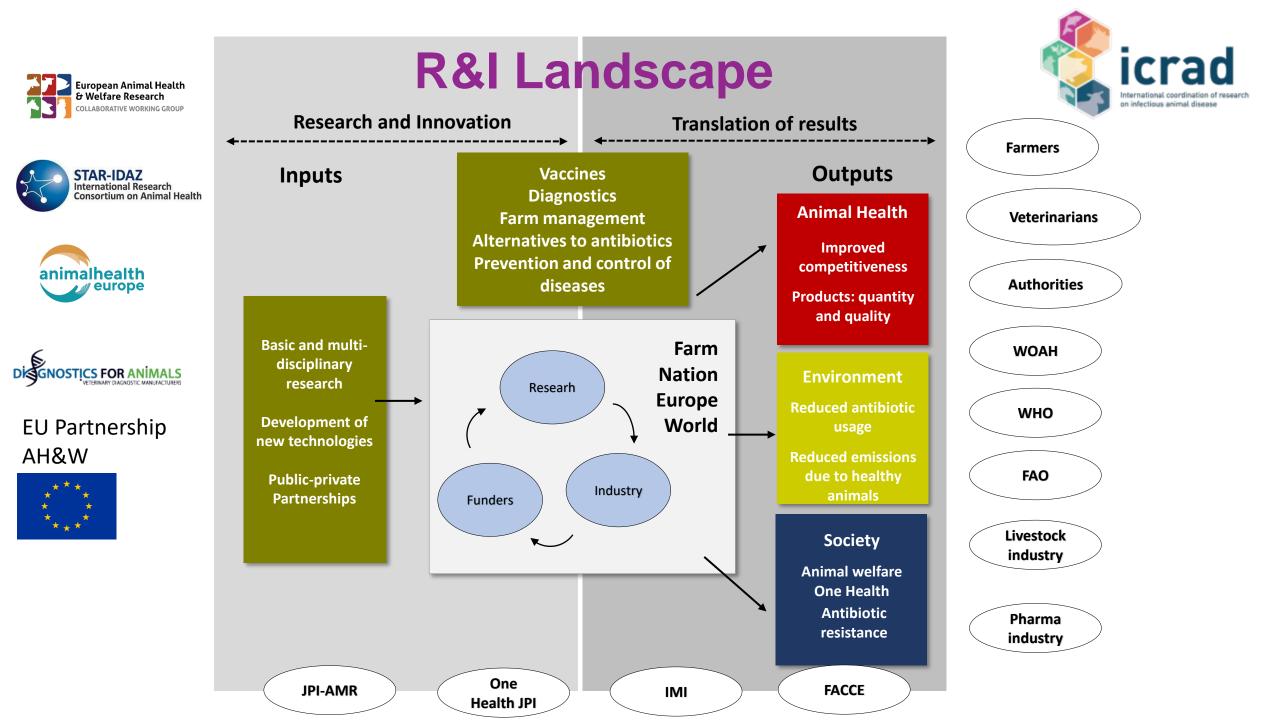


Development of research agendas by public and private institutions Development and evaluation of research proposals

Veterinary education programmes

Approval procedure




Governance

- National European funders of research
- **Provide financing to the project**
- **Approve composition of Project Management board**
- Approve all detailed and provisional budgets

Funders + AnimalhealthEurope, Diagnostics for Animals, CVOs, Copa-Cogeca FVE, EAEVE, Epizone, **STAR-IDAZ IRC, EC (observer), WOAH (observer)**

- Composed of members with expertise in epidemiology, laboratory diagnosis, trade/economics and a representative from industry
- At least one from outside of Europe

Find out more about the diseases

View report for a specific disease

Build report for several diseases

Step 1: select type of diseases

All diseases	Epizootic diseases	Food producing animal of	Food producing animal complexes	
AII	African Horse Sickness	African Swine Fever	African Trypanosomiasis (scores for Non Tse-Tse transmitted)	
Anthrax	Avian Influenza	BHV-I (IBR)	Bluetongue	
Bovine Spongiform Encephalopathy	Bovine Tuberculosis	BRSV	Brucellosis	
BVDV	Campylobacter	Chlamydiosis (C. Abortus)	Classical Swine Fever	

Step 2: select type of report

Disease & product analysis	Prioritisation model	Gap analysis	Scoring criteria

D&P analysis Step 3: select criteria

O Control Tools -

O Disease details -

- O Global challenges -
- O Main critical gaps -
- O Conclusion -
- O Sources of information -
- O STAR-IDAZ Research Road Maps →

Create

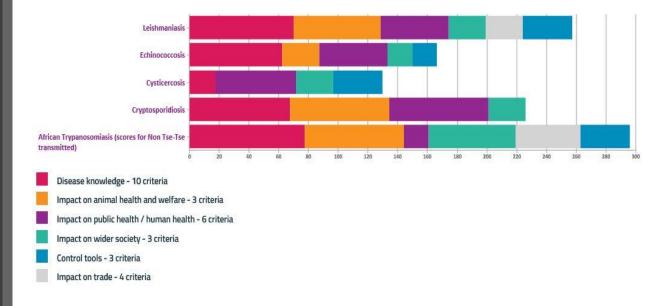
O Control Tools -							
⊘ Disease details →							
⊘ Description and characteristics	Description and characteristics 👻						
⊗ Pathogen	♂ Variability of the disease	Stability of the agent/pathogen in the environment					
⊗ Species involved -							
 Animal infected/carrier/disease 	 Human infected/disease 	 Vector cyclical/non- cyclical 					
 Reservoir (animal, environment) 							
Ø Description of infection & disease in natural hosts -							
⊘ Transmissibility	Ø Pathogenic life cycle	⊗ Signs/Morbidity					
	stages	⊗ Incubation period					
⊗ Mortality	 Shedding kinetic patterns 	 Mechanism of pathogenicity 					
😔 Zoonotic potential 👻	💈 Zoonotic potential 👻						
 Reported incidence in humans 	 Risk of occurence in humans, populations 	 Symptoms described in humans 					
	at risk, specific risk factors	 Likelihood of spread in humans 					

Prioritisation model

Step 3: select criteria

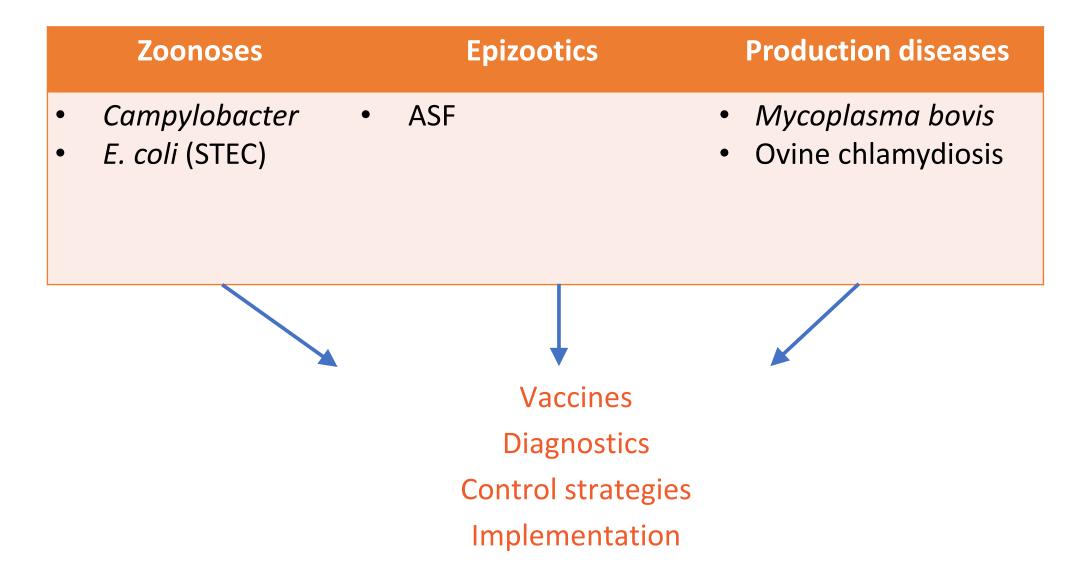
○ Check all ○ Uncheck all

- O DISEASE KNOWLEDGE 10 criteria
- O IMPACT ON ANIMAL HEALTH AND WELFARE 3 criteria
- O IMPACT ON PUBLIC HEALTH HUMAN HEALTH 6 criteria
- O IMPACT ON TRADE 4 criteria
- - ⊗ Appropriate diagnostics
 - ⊗ Appropriate vaccines
 - ⊗ Appropriate pharmaceuticals
- O IMPACT ON WIDER SOCIETY 3 criteria


Create Report

Different outputs

- 1. Disease and product analysis
- 2. Gap analysis
- 3. Prioritisation model
- 4. Disease summary


Leishmaniasis
Last update : 11/05/2018
Control Tools
Diagnostics availability
Commercial diagnostic kits available world
Yes for serological diagnosis, no for culture of the organis
Further info: List of animal health diagnostics
GAP: General need for diagnostics of higher sensitivity to

	Leishmaniasis
	Score
Diagnostics tools	
Availability	-2
Prevention and control - Differentiation of infected from vaccinated (DIVA)	1
Strategic reserve	-1
Capacity of production	-1
Affordable	-1
Quality/stability durability	-1
Sensitivity	1
Specificity	0
Reproducibility	2
Simplicity/ease of use	0
Speed	0

Recently updated diseases

Coming soon

- PCV2
- Poultry coccidiosis
- Nematodes (ruminants, pigs and poultry)

DISCONTOOLS e-book

- Disease Sheets (one page) for 53 infectious diseases
- Disease control tools available and those we need
- Available from Stakeholder forum > documents of interest
 - <u>https://discontools.eu/index.php?option=com_attachments&task</u>
 =download&id=271:Discontools-e-book

African Horse Sickness (AHS)

Disease Profile

AHS is a viral disease with a **major impact on equine populations** which have never experienced the disease. Transmission of AHS virus occurs almost entirely through hematophagous arthropods (*Cullcoldes* spp.), which act as biological vectors. Mortality rate in horses is 70-95%, in mules it is around 50%, and in donkeys it is limited to 10%. Occasional hosts include elephants, onager, dogs and camels. Zebras and elephants may be infected without showing signs of disease. AHS is endemic in subsharan Africa from where it occasionally spreads to other areas, with outbreaks having occurred in the Near and Middle East, Spain, Portugal and Morocco.

Risk

The major vector of AHS virus, *C inicola*, occurs in southern Europe and northern spread is expected as global temperatures increase. As **the distribution of C inicola moves north**, it may bring AHS virus into the range of other Culicoides species that are potentially competent vectors and which are commonly found in northern Europe. Once infected via this 'baton effect', these species may be able to spread the virus over much of Europe. Climate change may also increase vector competence.

What do we have?

Diagnostics: ELISA kits and lateral flow assays for AHS antibody detection are available worldwide The RT-PCR is a sensitive and rapid method for detecting AHS virus nucleic acids during either the incubation period at the start of an AHS epizootic, or for epidemiological investigations in species where clinical signs may not be apparent. Once the disease has been confirmed, the virus needs further characterization, primarily the serotype identification. To this aim, beside the virus neutralization test, several molecular tests have been published providing a rapid typing method for AHS virus in biological samples.

Vaccines There are no commercially available inactivated or recombinant vaccines but there are some locally killed vaccines for use in some countries. There is concern about the safety, efficacy (viral variants) and side effects of the live attenuated vaccines. Attenuated vaccines are considered a risk for use in AHS-free countries due to the risk of transmission, reassortment (i.e. exchange of gene segments between vaccine and field strains) and reversion to virulence. No AHS vaccines are currently licensed in the EU.

What do we need?

- Improved knowledge on the pathogenesis, host immune responses and epidemiology of AHS. There is a need to model the
 possible pathways of introduction and dissemination of the AHS virus in naïve areas.
- · Validation and harmonization of diagnostic assays.
- More genome sequencing of AHS virus circulating strains to assess the diagnostic capabilities of the molecular test in use and to investigate the potential for vaccine strains circulation and/or reassortment.
- Authorised and safe vaccines along with tests to differentiate vaccinated from infected horses. The development of crossprotective AHS virus vaccines with a long shelf life and that can provide rapid protection and be differentiated from natural infections during outbreaks is a major priority for research.

Read the full chapter here.

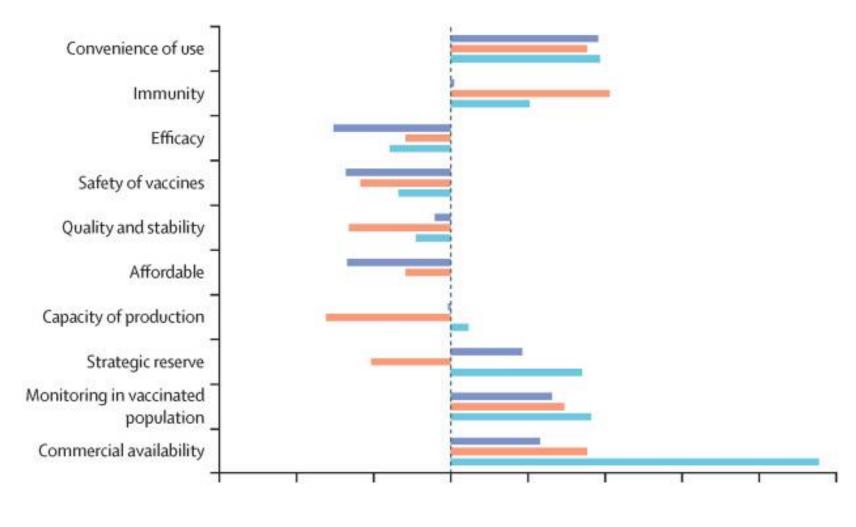
DISCONTOOLS

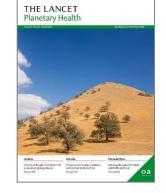
THE LANCET Planetary Health

REVIEW | VOLUME 6, ISSUE 10, E812-E824, OCTOBER 01, 2022

Disease control tools to secure animal and public health in a densely populated world

Johannes Charlier, DVM PhD 🙁 Prof Herman W Barkema, DVM 🛛 Prof Paul Becher, DVM 🔹

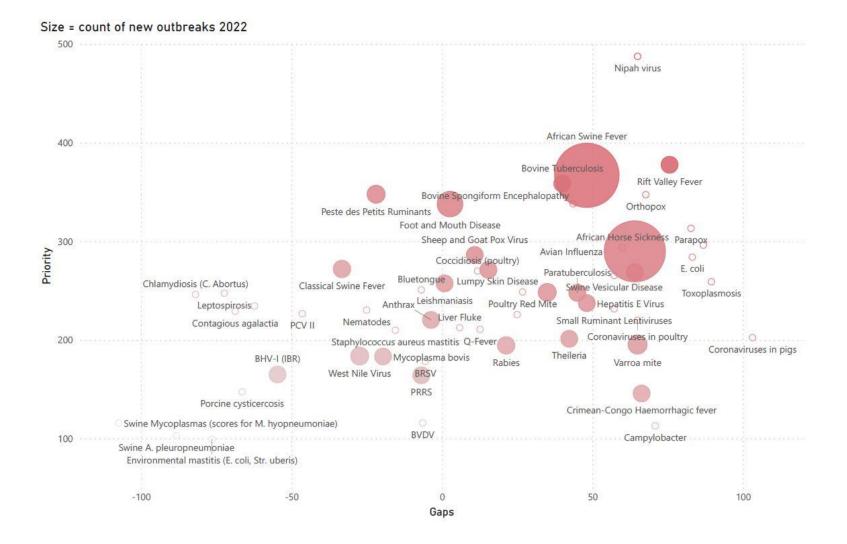

Paola De Benedictis, PhD • Prof Ingrid Hansson, DVM PhD • Prof Isabel Hennig-Pauka, DVM • et al. Show all authors


Open Access • Published: October, 2022 • DOI: https://doi.org/10.1016/S2542-5196(22)00147-4 •

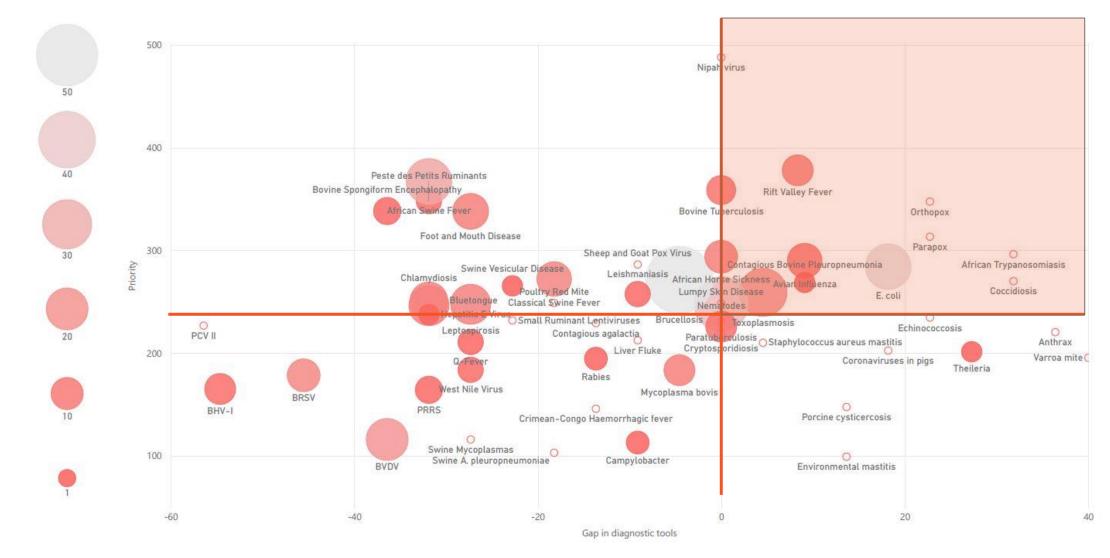
Check for updates

Vaccines





Epizootic Enzootic Zoonotic


Combining data sources

Count of diagnostics by priority and gap score diagnostics

Credits: Natalia Ciria, Universitat Autònoma de Barcelona

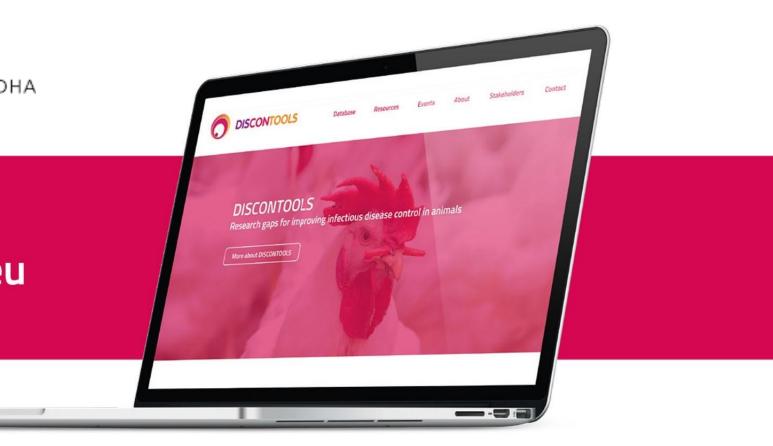
Conclusion

- Database containing information on 56 diseases (and growing) with multiple uses
 - Research policy officers, researchers, industry, students, ...
- Regular synthesis outputs
- Supported by 400+ community of experts and stakeholders
- Support to different players in animal health (Europe and globally).
- 9 new veterinary medicines of which 1 new active substance since 2020 (EMA, 2020-2022)

Funders

Country	Funder of DISCONTOOLS	
Austria	FFI Büro für Forschungsförderung und Innovation	
Italy	Ministero della Salute	
Belgium	FPS Health, Food Chain Safety and Environment	
The Netherlands	Ministry of Agriculture, Nature and Food Quality	
Spain	National Institute for the Agricultural and Food Research and Technology (INIA)	
Switzerland	Federal Department of Home Affairs, Federal Food Safety and Veterinary Office, Division of Innovation	
UK	Department for the Environment, Food and Rural Affairs (DEFRA)	
UK	Biotechnology and Biological Sciences Research Council (UKRI-BBSRC)	

Hosted and secretariat support from AnimalhealthEurope


Thank you - Register for updates!

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Department of Home Affairs FDHA Federal Food Safety and Veterinary Office FSVO

visit: www.discontools.eu

Further reading

- O'Brien et al., 2017. DISCONTOOLS: a database to identify research gaps on vaccines, pharmaceuticals and diagnostics for the control of infectious diseases of animals. <u>BMC</u> <u>Veterinary Research 13:1</u>
- DISCONTOOLS Supplement: Current research gaps for advancing control of infectious diseases in production animals. <u>Transboundary and Emerging Diseases 65, S1</u>
- Charlier et al., 2022. Disease control tools to secure animal and public health in a densely populated world. *Lancet Planetary Health* 6, e812-e824